- Home
- People
- Directorate
- Kerrie Mengersen
Professor Kerrie Mengersen
ACEMS Deputy Director, Chief Investigator
Queensland University of Technology
My focus is on using and developing new statistical and computational methods that can help to solve complex problems in the real world. These problems are in the fields of environment, genetics, health and medicine, and industry. My research areas include Bayesian statistics, hierarchical modelling and complex systems. What’s best about my job? That I can work with a diverse range of people doing outstanding things in many different areas, and contribute expertise in an important component of their work: making the best use of their data to help them make better decisions.
Research Interests:
Applied statistics
Bayesian networks
Bayesian statistical modelling
Complex systems modelling
computational methods and applications
Digging postholes
Qualifications:
PhD (University of New England)
BA(Hons) (University of New England)
Projects
Publications
Books
[Anonymous]
(2015). Biosecurity Surveillance: Quantitative Approaches.
(Jarrad, F., Low-Choy S., & Mengersen KL., Ed.). doi: 10.1079/9781780643595.0000
Book Chapters
Vercelloni, J., M. Caley J., & Mengersen KL.
(2020). Thresholds of Coral Cover That Support Coral Reef Biodiversity.
(Mengersen, KL., Pudlo P., & Robert C. P., Ed.).Lecture Notes in Mathematics: Case Studies in Applied Bayesian Data Science. 2259, 385 - 398. doi: 10.1007/978-3-030-42553-1_16
Santos-Fernández, E., Mengersen KL., & Wu P.
(2020). Bayesian Methods in Sport Statistics.
(Balakrishnan, N.., Colton T., Everitt B., Piegorsch W., Ruggeri F., & Teugels J. L., Ed.).Wiley StatsRef: Statistics Reference Online. 1 - 8. doi: 10.1002/9781118445112.stat08179
Xie, H-B., Li C., Da Xu R. Yi, & Mengersen KL.
(2020). Robust Kernelized Bayesian Matrix Factorization for Video Background/Foreground Separation.
(Nicosia, G., Pardalos P., Umeton R., Giuffrida G., & Sciacca V., Ed.).Lecture Notes in Computer Science: Machine Learning, Optimization, and Data Science. 1, 484 - 495. doi: 10.1007/978-3-030-37599-7_40
Mengersen, KL., Duncan E., Arbel J., Alston-Knox C., & White N.
(2019). Applications in Industry.
(Fruhwirth-Schnatter, S., Celeux G., & Robert C. P., Ed.).Handbook of Mixture Analysis.
Drovandi, C. C., Grazian C., Mengersen KL., & Robert C.
(2018). Approximating the Likelihood in ABC.
Handbook of Approximate Bayesian Computation. 321-368.
Mengersen, KL., McGree J., & Schmid C. H.
(2015). Statistical Analysis of N-of-1 Trials.
(Nikles, J., & Mitchell G., Ed.).The Essential Guide to N-of-1 Trials in Health. 135-153. doi: 10.1007/978-94-017-7200-6_12
Johnson, S., Mengersen KL., Ormsby M., & Whittle P.
(2015). Using Bayesian networks to model surveillance in complex plant and animal health systems.
(Jarrad, F., Low-Choy S., & Mengersen KL., Ed.).Biosecurity Surveillance: Quantitative Approaches. 278-295. doi: 10.1079/9781780643595.0278
Quinlan, M., Stanaway M., & Mengersen KL.
(2015). Biosecurity surveillance in agriculture and environment: a review.
(Jarrad, F.., Low-Choy S.., & Mengersen K.., Ed.).Biosecurity surveillance: quantitative approaches. 9-42. doi: 10.1079/9781780643595.0009
Murray, J., Whittle P., Jarrad F., Barrett S., Stoklosa R., & Mengersen KL.
(2015). Design of a surveillance system for non-indigenous species on Barrow Island: plants case study.
(Nikles, J., & Mitchell G., Ed.).Biosecurity surveillance: quantitative approaches. 203-216. doi: 10.1079/9781780643595.0203
van Havre, Z., & Whittle P.
(2015). Designing surveillance for emergency response.
(Jarrad, F., Low-Choy S., & Mengersen KL., Ed.).Biosecurity surveillance: quantitative approaches. 123-133. doi: 10.1079/9781780643595.0123
Mittnty, M., Whittle P., Burgman P., & Mengersen KL.
(2015). The role of surveillance in evaluating and comparing international quarantine systems.
(Jarrad, F., Low-Choy S., & Mengersen KL., Ed.).Biosecurity Surveillance: Quantitative Approaches. 137-150. doi: 10.1079/9781780643595.0137
Mengersen, KL., McGree J., & Schmid C. H.
(2015). Systematic Review and Meta-analysis Using N-of-1 Trials.
(Nikles, J., & Mitchell G., Ed.).The Essential Guide to N-of-1 Trials in Health. 211-231. doi: 10.1007/978-94-017-7200-6_16
Invited talks, refereed proceedings and other conference outputs
Warne, D. J., Crossman K. A., Jin W., Mengersen KL., Osborne K., Simpson M. J., et al.
(2020). Identification of two-phase recovery in hard corals across the Great Barrier Reef.
ACEMS 2020 Virtual Retreat.
Warne, D., Ebert A., Drovandi C., Mira A., & Mengersen KL.
(2020). Characterisation of the global response to the COVID-19 pandemic.
ACEMS COVID‐19 Research Workshop.
Adams, M. P., Sisson S., O'Brien K. R., Helmstedt K. J., Baker C. M., Koh E. J. Y., et al.
(2020). Propagating uncertainty through to model forecasts: deterministic Lotka-Volterra systems as a case study.
Quantitative Ecology Virtual Meeting 2020.
Shausan, A.., Mengersen KL., Drovandi C.., & Aaskov J..
(2019). Minimising Dengue Spread Using TIP Therapy.
Bayes on the Beach 2019.
Gilholm, P., Mengersen KL., & Thompson H.
(2019). Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling - poster Bayes on the Beach.
Bayes on the Beach 2019.
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2019). Evaluating the interplay between clusters, climatic covariates and spatial priors in spatio-temporal modelling of dengue in Makassar, Indonesia.
Bayes on the Beach 2019.
Mengersen, KL.
(2019). Bayesian Learning for Decision Making in the Big Data Era.
Bayes on the Beach 2019.
Moores, M. T., Nicholls G. K., Pettitt A. N., & Mengersen KL.
(2019). Bayesian Indirect Likelihood for the Potts Model.
The 12th International Conference on Monte Carlo Methods and Applications.
Gilholm, P., Mengersen KL., & Thompson H.
(2019). Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling - poster.
40th Annual Conference of the International Society for Clinical Biostatistics.
Jahan, F., & Mengersen KL.
(2019). Bayesian Empirical Likelihood Spatial Model applying Leroux Structure.
Bayes on the Beach 2019.
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2019). Temporal Modeling of Dengue Fever: A Comprehensive Literature Review.
3rd International Conference on Mathematics, Sciences, Technology, Education and their application (ICSMTEA) in Conjunction with 1st International Symposium on Green Materials & Technology (ISGMT).. 967, 15-21. doi: 10.4028/www.scientific.net/MSF.967.15
Mengersen, KL.
(2019). The Challenges, Discoveries and Examples of ABC.
The 12th International Conference on Monte Carlo Methods and Applications.
Cramb, S., Duncan EW., Baade PD., & Mengersen KL.
(2019). Computing the Australian Cancer Atlas: getting it ‘just right’.
The 12th International Conference on Monte Carlo Methods and Applications.
Jahan, F., Duncan E., Cramb S., Baade P., & Mengersen KL.
(2019). Multivariate Bayesian meta-analysis model to analyse estimated cancer incidence.
ACEMS Students and ECR Retreat.
Wu, P. Pao- Yen, Ruggeri F., & Mengersen KL.
(2019). Observational Uncertainty in Bayesian Networks and State Space Models.
Bayes on the Beach 2019.
Jones, S., Hargrave C., Deegan T., Holt T., & Mengersen KL.
(2019). Predicting the need for hydrogel spacers in prostate radiotherapy - a statistical modelling approach.
Australian Society of Medical Imaging and Radiation Therapy National Conference. doi: 10.1002/jmrs.2019.66.issue-S1,10.1002/jmrs.324
Mengersen, KL.
(2019). Virtual reality meets data science.
OzViz 2019.
Shausan, A.., Mengersen KL., Drovandi C.., & Aaskov J..
(2019). Minimising the severity of dengue Serotype 1 infection by transmissible interfering particles.
ACEMS Node Planning Day.
Cramb, S., Duncan EW., Aitken JA., Mengersen KL., & Baade PD.
(2019). Small-area melanoma incidence patterns across Australia: the thick and thin of it.
Australasian Epidemiological Association Annual Scientific Meeting 2019.
Peterson, E., Mengersen KL., Vercelloni J., & Brown R.
(2019). Virtual Reef Diver.
International Workshop on Spatial Statistics.
Jahan, F., Duncan E., Cramb S., Mengersen KL., & Baade P.
(2019). Augmeting Disease Maps: a Bayesian meta-analysis approach.
Young Statisticians Conference 2019.
Mengersen, KL.
(2019). Bayesian Statistical Analysis of Large Images.
Data Science Down Under 2019.
Shausan, A.., Mengersen KL., Drovandi C.., & Aaskov J..
(2019). Minimising Dengue Spread by Transmissible Interfering Particles.
Young Statistician Conference 2019.
Peterson, E., Mengersen KL., Vercelloni J., & Brown R.
(2019). Combining citizen science and professional monitoring data to conserve and sustainably use marine resources.
62nd ISI World Statistics Congress.
Jahan, F., & Mengersen KL.
(2019). Bayesian Empirical Likelihood Spatial Model applying Leroux Structure.
Young Statisticians Conference 2019.
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2019). Bayesian spatio-temporal conditional autoregressive localised model.
ACEMS Retreat 2019.
Mengersen, KL.
(2019). Which way should I cycle? A case study in Bayesian modelling for decision-making under uncertainty study.
ICSMTR2019: 3rd International Conference on Statistics, Mathematics, Teaching, and Research.
Xie, H., Van Huffel S., & Mengersen KL.
(2018). A hybrid Bayesian low rank approximation model for nonlocal image denoising.
EURASIP Summer School on Tensor-Based Signal Processing.
Holloway, J., Mengersen KL., & Helmstedt K. J.
(2018). Spatial and machine learning methods of satellite imagery analysis for Sustainable Development Goals.
IAOS-OECD Better Statistics for Better Lives.
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2018). Temporal modelling of dengue fever: A comprehensive literature review.
3rd International Conference on Mathematics, Sciences, Technology, Education and their application (ICSMTEA) in Conjunction with 1st International Symposium on Green Materials & Technology (ISGMT).
Aswi, A.., Mengersen KL., Cramb S., Hu W., & White G.
(2018). Comparing Spatio-Temporal models using CARBayes: An application to dengue fever in Makassar, Indonesia.
The joint international society for clinical Biostatistics and Australian Statistical Conference 2018.
Jahan, F., & Mengersen KL.
(2018). Bayesian Empirical Likelihood Spatial Model applying Leroux structure.
International Conference on Bayesian Statistics in the Big Data Era Bayesian statistics in the era of Big Data .
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2018). The impact of covariates on the grouping structure of a Bayesian spatio-temporal localised model.
Australasian Applied Statistics Conference 2018.
Jahan, F., Duncan EW., Cramb S., Baade P. D., & Mengersen KL.
(2018). Making More of Spatial Maps: A Bayesian meta-analysis approach.
Workshop on Young Bayesians and Big Data for Social Good.
Wu, P. Pao- Yen, Garufi L., D'Auria S., & Mengersen KL.
(2018). Understanding Changes in Physiological State During Triathlon Cycling Using Hidden Markov Models.
ISBA World Meeting 2018.
Cramb, S., Duncan EW., Baade PD., & Mengersen KL.
(2018). The Australian Cancer Atlas: Models and Messages.
Joint International Society for Clinical Biostatistics and Australian Statistical Conference 2018.
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2018). Bayesian spatio-temporal models using R-INLA.
ACEMS Retreat 2018.
Liquet, B.., Mengersen KL., Pettitt A.N., & Sutton M.
(2018). Bayesian Variable Selection Regression Of Multivariate Responses For Group Data.
Bayesian Statistics in the Big Data Era.
Cramb, S., Duncan EW., Baade PD., & Mengersen KL.
(2018). Bayesian disease mapping in R.
UseR! 2018.
Aswi, A.., Cramb S., Hu W., White G., & Mengersen KL.
(2018). Comparison of different Bayesian spatio-temporal models using R packages.
UseR! .
Ebert, A., Wu P., Mengersen KL., & Ruggeri F.
(2018). A Review of Distances on Functional Datasets for Likelihood-Free Inference.
Joint International Society for Clinical Biostatistics and Australian Statistical Conference 2018.
Jahan, F., Duncan E., Cramb S., Baade P. D., & Mengersen KL.
(2018). Making More of Spatial Maps: A Bayesian Meta-analysis approach.
ACEMS Students Retreat.
White, N., Mengersen KL., & Lea R.
(2017). Probabilistic deconvolution of microarray data using a hierarchical Bayesian model.
Royal Statistical Society Conference 2017.
Mengersen, KL.
(2017). Bayesian Maths and Stats meets new technology.
ISI2017- 61st World Statistics Congress.
Mengersen, KL.
(2017). Using Earth Observation Data for Offcial Statistics.
4th UN Conference on Big Data.
Reddan, T., Corness J., Powell J., Mengersen KL., & Harden F.
(2017). Stumped? It Could be Stump Appendicitis (ePoster).
The Society for Pediatric Radiology 60th Annual Meeting and Categorical Course. s228–s228. doi: 10.1007/s00247-017-3809-x
Mengersen, KL.
(2017). Looking forward, back and sideways: the many directions of Bayesian forecasting.
International Symposium on Forecasting, Cairns, June 25-28, 2017.
Ebert, A., Wu P., Dutta R., Mengersen KL., Ruggeri F., Mira A., et al.
(2017). Approximate Bayesian Computation for Dynamic Queueing Networks.
5th Symposium on Games and Decisions in Reliability and Risk.
Mengersen, KL.
(2017). Future Think.
Young Statisticians Conference 2017.
Cramb, S., Baade P. D., & Mengersen KL.
(2017). A new approach to small area cancer survival estimation.
Geomed 2017.
Mengersen, KL.
(2017). Looking forward, back and sideways: the many directions of Bayesian forecasting.
International Symposium on Forecasting, Cairns, June 25-28, 2017.
Cespedes, M. I., McGree J., Drovandi C. C., Mengersen KL., Doecke J., & Fripp J.
(2017). Spatio-temporal cortical brain patterns of Alzheimer's disease.
The International Biometric Society Australasian Region Conference.
Mengersen, KL.
(2017). Bayesian Maths and Stats meets new technology.
WIMSIG women-in-mathematical-sciences conference.
Ebert, A., Wu P., Mengersen KL., & Ruggeri F.
(2017). Efficient simulation of complex queueing systems with the R package queuecomputer.
French R meeting.
Cespedes, M. I., McGree J., Drovandi C. C., Mengersen KL., Doecke J., & Fripp J.
(2017). Spatio-temporal brain cortical patterns of Alzheimer's disease.
Bayes on the Beach.
Mengersen, KL.
(2017). Probabilistic Modelling in the real world.
International Conference for Machine Learning.
Aswi, A.., Cramb S., Duncan E., & Mengersen KL.
(2017). Bayesian spatial estimation when areas are few.
The international Biometric Society Australasian Region conference.
Mengersen, KL.
(2017). Probabilistic Modelling in the real world.
International Conference for Machine Learning.
Aswi, A.., Cramb S., Duncan E., & Mengersen KL.
(2017). Evaluating the impact of small number of areas on spatial estimation.
The Young Statistician Conference (YSC).
Mengersen, KL.
(2016). The Three Views of “I See”.
Big Data, Visualisation, Art and Science Festival 2016.
Mengersen, KL.
(2016). A principled experimental design approach to big data analysis.
International Conference for Mathematics and Statistics.
Mengersen, KL., & Peterson E.
(2016). Elicitation of expert information for conservation.
The International Environmetrics Society.
Psaltis, S. T. P., Vercelloni J., Kim J., Brown R., James A., Burrage K., et al.
(2016). Virtual reality for conservation.
International Conference on Web3D Technology. 177–178. doi: 10.1145/2945292.2945319
Mengersen, KL.
(2016). Combining new technology, big data, and maths and stats to fast track conservation.
Big Data and Visual Analytics.
Mengersen, KL., Pettitt A.N., Sutton M., & Liquet B..
(2016). Bayesian Variable Selection Regression Of Multivariate Responses For Group Data.
Australian Statistical Conference.
Reddan, T., Corness J., Mengersen KL., & Harden F.
(2016). Appendiceal sonography in children: A retrospective analysis as a platform for potential implementation of diagnostic categories.
23rd Annual International Conference of the Australasian Sonographers Association. 37–46. doi: 10.1002/sono.12058
Mengersen, KL.
(2016). How to be Bayesian using informative priors to improve decision making.
2016 Forum Mathematics-for-Industry (FMfI) .
Mengersen, KL.
(2016). Building Bridges: New Bayesian Insights into Old Problems.
The 4th Institute of Mathematical Statistics Asia Pacific Rim Meeting.
Reddan, T., Corness J., Mengersen KL., & Harden F.
(2016). The grumpy stump - ultrasound and stump appendicitis.
23rd Annual International Conference of the Australasian Sonographers Association. 52–53. doi: 10.1002/sono.12059
Mengersen, KL.
(2016). How to be Bayesian in the Big Data era.
Accelerated Data and Computing Workshop .
Mengersen, KL.
(2016). A principled experimental design approach to modelling and of big data analysis.
Spring Statistics Seminar Series.
Bednarz, T., Kim J., Brown R., James A., Burrage K., Clifford S., et al.
(2016). Virtual reality for conservation.
Web3D 2016: 21st International Conference on Web3D Technology. 177–178. doi: 10.1145/2945292.2945319
Arbel, J., Mengersen KL., Rousseau J., & Mengersen KL.
(2016). Bayesian nonparametric dependent model for partially replicated data: The influence of fuel spills on species diversity.
Conference in Honour of Professor Peter Hall.
Mengersen, KL.
(2016). Priors and problems; using one to inform the other .
The International Environmetrics Society Conference.
Mengersen, KL.
(2016). Employing priors to learn about latent variable models.
International Society for Bayesian Analysis 2016.
Mengersen, KL., Clifford S., Drovandi C. C., Harden F., Harden M., & Tierney N J.
(2016). Bayesian Approaches in Occupational Health Surveillance.
International Society for Bayesian Analysis.
Cook, A., Wu P., & Mengersen KL.
(2015). Machine learning and visual analytics for consulting business decision support.
2015 Big Data Visual Analytics (BDVA). doi: 10.1109/BDVA.2015.7314299
Mengersen, KL., Taylor J., O'Keefe C., George A., & Bednarz T.
(2015). Big data analytics as a tool to gain new insights.
eResearch Australasia 2015.
Bednarz, T., Kim J., & Mengersen KL.
(2015). Immersive Mixed Reality environments as modern interactive visualisation platforms.
Bayes on the Beach.
Journal Articles
Warne, D. J., Crossman K. A., Jin W., Mengersen KL., Osborne K., Simpson M. J., et al.
(Submitted). Identification and modelling of two-phase recovery in hard corals across the Great Barrier Reef.
Journal of Applied Ecology.
Santos‐Fernandez, E., Peterson E. E., Vercelloni J., Rushworth E., & Mengersen KL.
(2021). Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective.
Journal of the Royal Statistical Society: Series C (Applied Statistics). 70(1), 147 - 173. doi: 10.1111/rssc.12453
Li, C., Xie H-B., Fan X., Da Xu R. Yi, Van Huffel S., & Mengersen KL.
(2021). Kernelized Sparse Bayesian Matrix Factorization.
IEEE Transactions on Neural Networks and Learning Systems. 32(1), 391 - 404. doi: 10.1109/TNNLS.2020.2978761
Warne, D., Ebert A., Drovandi C., Hu W., Mira A., & Mengersen KL.
(2020). Hindsight is 2020 vision: a characterisation of the global response to the COVID-19 pandemic.
MedRxiv. doi: 10.1101/2020.04.30.20085662
A. Farr, C., Mengersen KL., Ruggeri F., Simpson D., Wu P., & Yarlagadda P.
(2020). Combining Opinions for Use in Bayesian Networks: A Measurement Error Approach.
International Statistical Review. 88(2), 335-353. doi: 10.1111/insr.12350
Li, C., Xie H-B., Mengersen KL., Fan X., Da Xu R. Yi, Sisson S., et al.
(2020). Bayesian Nonnegative Matrix Factorization With Dirichlet Process Mixtures.
IEEE Transactions on Signal Processing. 68, 3860 - 3870. doi: 10.1109/TSP.2020.3003120
Gilholm, P., Mengersen KL., & Thompson H.
(2020). Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling.
(Kwok, M. Ki, Ed.).PLOS ONE. 15(6), e0233542. doi: 10.1371/journal.pone.0233542
Jahan, F., Duncan E. W., Cramb S., Baade P. D., & Mengersen KL.
(2020). Augmenting disease maps: a Bayesian meta-analysis approach.
Royal Society Open Science. 7(8), 192151. doi: 10.1098/rsos.192151
Holloway-Brown, J., Helmstedt K. J., & Mengersen KL.
(2020). Stochastic spatial random forest (SS-RF) for interpolating probabilities of missing land cover data.
Journal of Big Data. 7(1), 55. doi: 10.1186/s40537-020-00331-8
Adams, M. P., Sisson S., Helmstedt K. J., Baker C. M., Holden M. H., Plein M., et al.
(2020). Informing management decisions for ecological networks, using dynamic models calibrated to noisy time‐series data.
Ecology Letters. 23(4), 607-619. doi: 10.1111/ele.13465
Cespedes, M. I., McGree J. M., Drovandi C. C., Mengersen KL., Fripp J., & Doecke J. D.
(2020). Relative rate of change in cognitive score network dynamics via Bayesian hierarchical models reveal spatial patterns of neurodegeneration.
Statistics in Medicine. 39(21), 2695 - 2713. doi: 10.1002/sim.8568
Moores, M., Nicholls G., Pettitt A., & Mengersen KL.
(2020). Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model.
Bayesian Analysis. 15(1), 1-27. doi: 10.1214/18-BA1130
Burrage, K., Burrage P., Davis J., Bednarz T., Kim J., Vercelloni J., et al.
(2020). A stochastic model of jaguar abundance in the Peruvian Amazon under climate variation scenarios.
Ecology and Evolution. 10(19), 10829 - 10850. doi: 10.1002/ece3.6740
Warne, D. J., Ebert A., Drovandi C., Hu W., Mira A., & Mengersen KL.
(2020). Hindsight is 2020 vision: a characterisation of the global response to the COVID-19 pandemic.
BMC Public Health. 20, 1868. doi: 10.1186/s12889-020-09972-z
Aswi, A.., Cramb S., Duncan E., Hu W., White G., & Mengersen KL.
(2020). Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling.
Spatial and Spatio-temporal Epidemiology. 33, 100335. doi: 10.1016/j.sste.2020.100335
Perez, J. Rodriguez, Leigh C., Liquet B., Kermorvant C., Peterson E., Sous D., et al.
(2020). Detecting technical anomalies in high-frequency water-quality data using Artificial Neural Networks.
Environmental Science & Technology. 54(21), 13719-13730. doi: 10.1021/acs.est.0c04069
Aswi, A.., Cramb S., Duncan E., Hu W., White G., & Mengersen KL.
(2020). Bayesian spatial survival models for hospitalisation of dengue: A case study of Wahidin hospital in Makassar, Indonesia.
International Journal of Environmental Research and Public Health. 17(3), 878. doi: 10.3390/ijerph17030878
Vercelloni, J., Liquet B., Kennedy E. V., González‐Rivero M., M. Caley J., Peterson E. E., et al.
(2020). Forecasting intensifying disturbance effects on coral reefs.
Global Change Biology. 26(5), 2785 - 2797. doi: 10.1111/gcb.15059
Peterson, E. E., Santos-Fernández E., Chen C., Clifford S., Vercelloni J., Pearse A., et al.
(2020). Monitoring through many eyes: Integrating disparate datasets to improve monitoring of the Great Barrier Reef.
Environmental Modelling & Software. 124, 104557. doi: 10.1016/j.envsoft.2019.104557
M. MacNeil, A., Mellin C., Matthews S., Wolff N. H., McClanahan T. R., Devlin M., et al.
(2019). Water quality mediates resilience on the Great Barrier Reef.
Nature Ecology & Evolution. 3(4), 620 - 627. doi: 10.1038/s41559-019-0832-3
Zhang, Y., Bambrick H., Mengersen KL., Tong S., Feng L., Zhang L., et al.
(2019). Resurgence of Pertussis Infections in Shandong, China: Space-Time Cluster and Trend Analysis.
The American Journal of Tropical Medicine and Hygiene. 100(6), 1342 - 1354. doi: 10.4269/ajtmh.19-0013
Talagala, P. Dilini, Hyndman R. J., Leigh C., Mengersen KL., & Smith-Miles K.
(2019). A feature‐based procedure for detecting technical outliers in water‐quality data from in situ sensors.
Water Resources Research. 55(11), 8547-8568. doi: 10.1029/2019WR024906
Kennedy, D. W., White N. M., Benton M. C., Lea R. A., & Mengersen KL.
(2019). Cell-type specific analysis of heterogeneous methylation signal using a Bayesian model-based approach.
bioRxiv. 682070. doi: 10.1101/682070
Wu, P. Pao‐Yen, Mengersen KL., M. Caley J., McMahon K., Rasheed M. A., Kendrick G. A., et al.
(2019). Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study.
Methods in Ecology and Evolution. 10(10), 1723 - 1733. doi: 10.1111/2041-210X.13269
Leigh, C., Alsibai O., Hyndman R. J., Kandanaarachchi S., King O. C., McGree J. M., et al.
(2019). A framework for automated anomaly detection in high frequency water-quality data from in situ sensors.
Science of The Total Environment. 664, 885 - 898. doi: 10.1016/j.scitotenv.2019.02.085
Tierney, N. J., Mira A., H. Reinhold J., Arbia G., Clifford S., Auricchio A., et al.
(2019). Evaluating health facility access using Bayesian spatial models and location analysis methods.
(Shah, T. Ikram, Ed.).PLOS ONE. 14(8), e0218310. doi: 10.1371/journal.pone.0218310
Ullah, I., & Mengersen KL.
(2019). Bayesian mixture models and their Big Data implementations with application to invasive species presence-only data.
Journal of Big Data. 6(1), 29. doi: 10.1186/s40537-019-0188-1
Aswi, A.., Cramb S., Moraga P., & Mengersen KL.
(2019). Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review.
Epidemiology & Infection. 147, e33. doi: 10.1017/S0950268818002807
Li, C., Xie H-B., Fan X., Da Xu R. Yi, Van Huffel S., Sisson S., et al.
(2019). Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein’s Unbiased Risk Estimator.
IEEE Transactions on Image Processing. 28(10), 4899 - 4911. doi: 10.1109/TIP.2019.2912292
Leigh, C., Kandanaarachchi S., McGree J. M., Hyndman R. J., Alsibai O., Mengersen KL., et al.
(2019). Predicting sediment and nutrient concentrations from high-frequency water-quality data.
PLOS ONE. 14(8), e0215503. doi: 10.1371/journal.pone.0215503
Thomas, A., White N. M., Toms L-M. Leontjew, & Mengersen KL.
(2019). Application of ensemble methods to analyse the decline of organochlorine pesticides in relation to the interactions between age, gender and time.
(Garrett, T. J., Ed.).PLOS ONE. 14(11), e0223956. doi: 10.1371/journal.pone.0223956
Colin, B., & Mengersen KL.
(2019). Estimating Spatial and Temporal Trends in Environmental Indices Based on Satellite Data: A Two-Step Approach.
Sensors. 19(2), 361. doi: 10.3390/s19020361
Wu, P. Pao- Yen, Sterkenburg N., Everett K., Chapman D. W., White N., & Mengersen KL.
(2019). Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue.
PLoS ONE. 14(7), e0219295. doi: 10.1371/journal.pone.0219295
Holloway, J., Helmstedt K. J., Mengersen KL., & Schmidt M.
(2019). A Decision Tree Approach for Spatially Interpolating Missing Land Cover Data and Classifying Satellite Images.
Remote Sensing. 11(15), 1796. doi: 10.3390/rs11151796
Sutton, M., Mengersen KL., & Liquet B..
(2019). [HDDA] sparse subspace constrained partial least squares.
Journal of Statistical Computation and Simulation. 89(6), 1005-1019. doi: 10.1080/00949655.2018.1555830
Benton, M. C., Lea R. A., Macartney-Coxson D., Sutherland H. G., White N., Kennedy D., et al.
(2019). Genome-wide allele-specific methylation is enriched at gene regulatory regions in a multi-generation pedigree from the Norfolk Island isolate.
Epigenetics & Chromatin. 12, 60. doi: 10.1186/s13072-019-0304-7
Duncan, E. W., Cramb S., Aitken J. F., Mengersen KL., & Baade P. D.
(2019). Development of the Australian Cancer Atlas: spatial modelling, visualisation, and reporting of estimates.
International Journal of Health Geographics. 18(1), 21. doi: 10.1186/s12942-019-0185-9
Santos-Fernández, E., Wu P., & Mengersen KL.
(2019). Bayesian statistics meets sports: a comprehensive review.
Journal of Quantitative Analysis in Sports. 15(4), 289 - 312. doi: 10.1515/jqas-2018-0106
Holloway, J., & Mengersen KL.
(2018). Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review.
Remote Sensing. 10(9), 1365. doi: 10.3390/rs10091365
Kennedy, DW., White N., Benton M. C., Fox A., Scott R. J., Griffiths L. R., et al.
(2018). Critical evaluation of linear regression models for cell-subtype specific methylation signal from mixed blood cell DNA.
(Tost, J., Ed.).PLOS ONE. 13(12), e0208915. doi: 10.1371/journal.pone.0208915
Hargrave, C., Deegan T., Bednarz T., Poulsen M., Harden F., & Mengersen KL.
(2018). An image‐guided radiotherapy decision support framework incorporating a Bayesian network and visualization tool.
Medical Physics. 45(7), 2884 - 2897. doi: 10.1002/mp.12979
Sequeira, A.. M. M., Rodríguez J.. P., Eguíluz V.. M., Harcourt R.., Hindell M.., Sims D.. W., et al.
(2018). Convergence of marine megafauna movement patterns in coastal and open oceans.
Proceedings of the National Academy of Sciences. 115(12), 3072-3077. doi: 10.1073/pnas.1716137115
Vercelloni, J., Clifford S., M. Caley J., Pearse A. R., Brown R., James A., et al.
(2018). Using virtual reality to estimate aesthetic values of coral reefs.
Royal Society Open Science. 5(4), 172226. doi: 10.1098/rsos.172226
Hargrave, C., Deegan T., Poulsen M., Bednarz T., Harden F., & Mengersen KL.
(2018). A feature alignment score for online cone‐beam.
Medical Physics. 45(7), 2898 - 2911. doi: 10.1002/mp.12980
Wu, P., McMahon K., Rasheed M. A., Kendrick G. A., York P. H., Chartrand K., et al.
(2018). Managing seagrass resilience under cumulative dredging affecting light: Predicting risk using dynamic Bayesian networks.
Journal of Applied Ecology. 55(3), 1339-1350. doi: 10.1111/1365-2664.13037
Sequeira, A. M. M., Bouchet P. J., Yates K. L., Mengersen KL., & M. Caley J.
(2018). Transferring biodiversity models for conservation: Opportunities and challenges.
(McPherson, J., Ed.).Methods in Ecology and Evolution. 9(5), 1250-1264. doi: 10.1111/2041-210X.12998
Leigh, C., Kandanaarachchi S., McGree J., Hyndman R. J., Alsibai O., Mengersen KL., et al.
(2018). Predicting sediment and nutrient concentrations in rivers using high frequency water quality surrogates.
Xie, H-B., Sivakumar B., Boonstra T. W., & Mengersen KL.
(2018). Fuzzy Entropy and Its Application for Enhanced Subspace Filtering.
IEEE Transactions on Fuzzy Systems. 26(4), 1970 - 1982. doi: 10.1109/TFUZZ.2017.2756829
Leigh, C., Alsibai O., Hyndman R. J., Kandanaarachchi S., King O. C., McGree J., et al.
(2018). A framework for automated anomaly detection in high frequency water-quality data from in situ sensors.
arXiv preprints.
Nott, D. J., Drovandi C. C., Mengersen KL., & Evans M.
(2018). Approximation of Bayesian Predictive p -Values with Regression ABC.
Bayesian Analysis. 13(1), 59 - 83. doi: 10.1214/16-BA1033
Cespedes, M. Ines, McGree J. M., Drovandi C. C., Mengersen KL., Doecke J. D., & Fripp J.
(2018). AGE DEPENDENT BAYESIAN NETWORKS REVEAL SPATIO-TEMPORAL PATTERNS OF NEURODEGENERATION IN HEALTHY AGEING AND ALZHEIMER’S DISEASE.
Alzheimer's & Dementia. 14(7), P1228. doi: 10.1016/j.jalz.2018.06.1727
Wu, P., M. Caley J., Kendrick G. A., McMahon K., & Mengersen KL.
(2018). Dynamic Bayesian network inferencing for non-homogeneous complex systems.
Journal of the Royal Statistical Society: Series C (Applied Statistics). 67(2), 417-434. doi: 10.1111/rssc.12228
Colin, B., Schmidt M., Clifford S., Woodley A., & Mengersen KL.
(2018). Influence of Spatial Aggregation on Prediction Accuracy of Green Vegetation Using Boosted Regression Trees.
Remote Sensing. 10(8), 1260. doi: 10.3390/rs10081260
Wang, X., Nott D. J., Drovandi C. C., Mengersen KL., & Evans M.
(2018). Using History Matching for Prior Choice.
Technometrics. 60(4), 445 - 460. doi: 10.1080/00401706.2017.1421587
Cespedes, M. I., McGree J., Drovandi C. C., Mengersen KL., Doecke J. D., Fripp J., et al.
(2018). An efficient algorithm for estimating brain covariance networks.
PLOS ONE. 13(7), e0198583. doi: 10.1371/journal.pone.0198583
Mengersen, KL., Peterson E., Clifford S., Ye N., Kim J., Bednarz T., et al.
(2017). Modelling imperfect presence data obtained by citizen science.
Environmetrics. 28(5), e2446. doi: 10.1002/env.2446
Thomas, A., Toms L-M. L., Harden F. A., Hobson P., White N., Mengersen KL., et al.
(2017). Concentrations of organochlorine pesticides in pooled human serum by age and gender.
Environmental Research. 154, 10-18. doi: 10.1016/j.envres.2016.12.009
Vercelloni, J., M. Caley J., & Mengersen KL.
(2017). Crown-of-thorns starfish undermine the resilience of coral populations on the Great Barrier Reef.
Global Ecology and Biogeography. 26(7), 846 - 853. doi: 10.1111/geb.12590
Chen, C.C.-M.., Drovandi C. C., Keith J.M.., Anthony K., M. Caley J., & Mengersen KL.
(2017). Bayesian semi-individual based model with approximate Bayesian computation for parameters calibration: Modelling Crown-of-Thorns populations on the Great Barrier Reef.
Ecological Modelling. 364, 113 - 123. doi: 10.1016/j.ecolmodel.2017.09.006
Sommerfeld, J., Buys L., Mengersen KL., & Vine D.
(2017). Influence of demographic variables on uptake of domestic solar photovoltaic technology.
Renewable and Sustainable Energy Reviews. 67, 315–323. doi: 10.1016/j.rser.2016.09.009
Cramb, S., Moraga P., Mengersen KL., & Baade P. D.
(2017). Spatial variation in cancer incidence and survival over time across Queensland, Australia.
Spatial and Spatio-temporal Epidemiology. 23, 59 - 67. doi: 10.1016/j.sste.2017.09.002
Colin, B., Clifford S., Wu P., Rathmanner S., & Mengersen KL.
(2017). Using Boosted Regression Trees and Remotely Sensed Data to Drive Decision-Making.
Open Journal of Statistics. 07(05), 859 - 875. doi: 10.4236/ojs.2017.75061
Vercelloni, J., Mengersen KL., Ruggeri F., & M. Caley J.
(2017). Improved Coral Population Estimation Reveals Trends at Multiple Scales on Australia’s Great Barrier Reef.
Ecosystems. 20(7), 1337 - 1350. doi: 10.1007/s10021-017-0115-2
Liquet, B.., Mengersen KL., Pettitt A.N., & Sutton M.
(2017). Bayesian Variable Selection Regression of Multivariate Responses for Group Data.
Bayesian Analysis. 12(4), 1039 - 1067. doi: 10.1214/17-BA1081
Chen, CC-M., Bourne D. G., Drovandi C. C., Mengersen KL., Willis B. L., M. Caley J., et al.
(2017). Modelling environmental drivers of black band disease outbreaks in populations of foliose corals in the genus Montipora.
PeerJ. 5, e3438. doi: 10.7717/peerj.3438
Fraser, M. W., Short J., Kendrick G., McLean D., Keesing J., Byrne M., et al.
(2017). Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study.
Ecological Indicators. 78, 229 - 242. doi: 10.1016/j.ecolind.2017.03.026
Moraga, P., Cramb S., Mengersen KL., & Pagano M.
(2017). A geostatistical model for combined analysis of point-level and area-level data using INLA and SPDE.
Spatial Statistics. 21, 27 - 41. doi: 10.1016/j.spasta.2017.04.006
White, N., Benton M., Kennedy DW., Fox A., Griffiths L., Lea R., et al.
(2017). Accounting for cell lineage and sex effects in the identification of cell-specific DNA methylation using a Bayesian model selection algorithm.
PLoS ONE. 12, Article number: e0182455. doi: 10.1371/journal.pone.0182455
Baker, J., White N., Mengersen KL., Rolfe M., & Morgan G. G.
(2017). Joint modelling of potentially avoidable hospitalisation for five diseases accounting for spatiotemporal effects: A case study in New South Wales, Australia.
(Ali, M., Ed.).PLOS ONE. 12(8), e0183653. doi: 10.1371/journal.pone.0183653
Cespedes, M. I., Fripp J., McGree J., Drovandi C. C., Mengersen KL., & Doecke J. D.
(2017). Comparisons of neurodegeneration over time between healthy ageing and Alzheimer's disease cohorts via Bayesian inference.
BMJ Open. 7(2), 12174-12174. doi: 10.1136/bmjopen-2016-012174
Drovandi, C. C., Holmes C. C., McGree J., Mengersen KL., Richardson S., & Ryan E. G.
(2017). Principles of Experimental Design for Big Data Analysis.
Statistical Science. 32(3), 385 - 404. doi: 10.1214/16-STS604
Zhang, Y., Milinovich G., Xu Z., Bambrick H., Mengersen KL., Tong S., et al.
(2017). Monitoring pertussis infections using internet search queries.
Scientific Reports. 7, Article number–10437. doi: 10.1038/s41598-017-11195-z
Chen, C. Chia- Ming, Keith J.M.., & Mengersen KL.
(2017). Accurate phenotyping: Reconciling approaches through Bayesian model averaging.
PLoS ONE. 12(4), e0176136. doi: 10.1371/journal.pone.0176136
Johnson, S., Logan M., Fox D., Kirkwood J., Pinto U., & Mengersen KL.
(2017). Environmental decision-making using Bayesian networks: Creating an environmental report card.
Applied Stochastic Models in Business and Industry. doi: 10.1002/asmb.2190
Wu, P., Mengersen KL., McMahon K., Kendrick G. A., Chartrand K., York P. H., et al.
(2017). Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience.
Nature Communications. 8(1), doi: 10.1038/s41467-017-01306-9
Thomas, R., Walland M., Thomas A., & Mengersen KL.
(2016). Lowering of intraocular pressure after phacoemulsification in primary open-angle and angle-closure glaucoma.
Asia-Pacific Journal of Ophthalmology. 5(1), 79-84. doi: 10.1097/APO.0000000000000174
Cramb, S., Mengersen KL., Lambert P. C., Ryan L. M., & Baade P. D.
(2016). A flexible parametric approach to examining spatial variation in relative survival.
Statistics in Medicine. 35(29), 5448-5463. doi: 10.1002/sim.7071
Xie, H., Dokos S., Sivakumar B., & Mengersen KL.
(2016). Symplectic geometry spectrum regression for prediction of noisy time series.
Physical Review E. 93(5), doi: 10.1103/PhysRevE.93.052217
Huang, X., Clements A. C. A., Williams G., Mengersen KL., Tong S., & Hu W.
(2016). Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space–time SIR-based model.
Environmental Research. 146, 308–314. doi: 10.1016/j.envres.2016.01.013
Gonzalez, L., Montes G., Puig E., Johnson S., Mengersen KL., & Gaston K.
(2016). Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation.
Sensors. 16(1), doi: 10.3390/s16010097
Reddan, T., Corness J., Mengersen KL., & Harden F.
(2016). Sonographic diagnosis of acute appendicitis in children: A 3-year retrospective.
Sonography. 3(3), 87-94. doi: 10.1002/sono.12068
Thomas, R., Mengersen KL., Thomas A., & Walland M. J.
(2016). Association between location of laser iridotomy and frequency of visual symptoms: a Bayesian learning analysis.
Clinical & Experimental Ophthalmology. 44(3), 215-217. doi: 10.1111/ceo.12667
Xie, G., Roiko A., Stratton H., Lemckert C., Dunn P. K., & Mengersen KL.
(2016). A generalized QMRA beta-Poisson dose-response model.
Risk Analysis. 36(10), 1948-1958. doi: 10.1111/risa.12561
Arbel, J., Mengersen KL., & Rousseau J.
(2016). Bayesian nonparametric dependent model for partially replicated data: The influence of fuel spills on species diversity.
The Annals of Applied Statistics. 10(3), 1496 - 1516. doi: 10.1214/16-AOAS944
Duncan, EW., White N., & Mengersen KL.
(2016). Bayesian spatiotemporal modelling for identifying unusual and unstable trends in mammography utilisation.
BMJ Open. 6(5), doi: 10.1136/bmjopen-2015-010253
Kang, S. Y., McGree J., Drovandi C. C., M. Caley J., & Mengersen KL.
(2016). Bayesian adaptive design: Improving the effectiveness of monitoring of the Great Barrier Reef.
Ecological Applications. 26(8), 2637-2648. doi: 10.1002/eap.1409
Mengersen, KL., Drovandi C. C., Robert C. P., Pyne D. B., Gore C. J., & Chen C. W. S.
(2016). Bayesian estimation of small effects in exercise and sports science.
PLOS ONE. 11(4), 1-23. doi: 10.1371/journal.pone.0147311
Reddan, T., Corness J., Powell J., Harden F., & Mengersen KL.
(2016). Stumped? It could be stump appendicitis.
Sonography. doi: 10.1002/sono.12098
White, N., & Mengersen KL.
(2016). Predicting health programme participation: A gravity-based, hierarchical modelling approach.
Journal of the Royal Statistical Society: Series C (Applied Statistics). 65(1), 145-166. doi: 10.1111/rssc.12111
Beaudequin, D., Harden F., Roiko A., & Mengersen KL.
(2016). Utility of Bayesian networks in QMRA-based evaluation of risk reduction options for recycled water.
Science of The Total Environment. 541, 1393-1409. doi: 10.1016/j.scitotenv.2015.10.030
Reddan, T., Corness J., Mengersen KL., & Harden F.
(2016). Ultrasound of paediatric appendicitis and its secondary sonographic signs: Providing a more meaningful finding.
Journal of Medical Radiation Sciences. 63(1), 59-66. doi: 10.1002/jmrs.154
Kang, S. Y., Cramb S., White N., Ball S. J., & Mengersen KL.
(2016). Making the most of spatial information in health: a tutorial in Bayesian disease mapping for areal data.
Geospatial Health. 11(2), doi: 10.4081/gh.2016.428
Hsieh, J. C. - F., Cramb S., McGree J., Dunn N. A. M., Baade P. D., & Mengersen KL.
(2016). Spatially varying coefficient inequalities: Evaluating how the impact of patient characteristics on breast cancer survival varies by location.
PLOS ONE. 11(5), doi: 10.1371/journal.pone.0155086
Wells, J. A., Wilson K. A., Abram N., Nunn M., Gaveau D. L. A., Runting R. K., et al.
(2016). Rising floodwaters: Mapping impacts and perceptions of flooding in Indonesian Borneo.
Environmental Research Letters. 11(6), doi: 10.1088/1748-9326/11/6/064016
Ashcroft, M. B., Casanova-Katny A., Mengersen KL., Rosenstiel T. N. A., Turnbull J. D., Wasley J., et al.
(2016). Bayesian methods for comparing species physiological and ecological response curves.
Ecological Informatics. 34, 35-43. doi: 10.1016/j.ecoinf.2016.03.001
Brown, R., Bruza P., Heard W., Mengersen KL., & Murray J.
(2016). On the (virtual) getting of wisdom: Immersive 3D interfaces for eliciting spatial information from experts.
Spatial Statistics. 18(Part A), 318-331. doi: 10.1016/j.spasta.2016.07.001
Cramb, S., Mengersen KL., & Baade P. D.
(2016). Spatio-temporal relative survival of breast and colorectal cancer in Queensland, Australia 2001–2011.
Spatial and Spatio-temporal Epidemiology. 19, 103-114. doi: 10.1016/j.sste.2016.08.002
Hargrave, C., Mason N., Guidi R., Miller J-A., Becker J., Moores M., et al.
(2016). Automated replication of cone beam CT-guided treatments in the Pinnacle treatment planning system for adaptive radiotherapy.
Journal of Medical Radiation Sciences. 63(1), 48-58. doi: 10.1002/jmrs.141
Tuyl, F., Gerlach R., & Mengersen KL.
(2016). Consensus priors for multinomial and binomial ratios.
Journal of Statistical Theory and Practice. 10(4), 736-754. doi: 10.1080/15598608.2016.1219684
Fitzpatrick, B., Lamb D. W., & Mengersen KL.
(2016). Ultrahigh dimensional variable selection for interpolation of point referenced spatial data: A digital soil mapping case study.
PLOS ONE. 11(9), doi: 10.1371/journal.pone.0162489
O’Leary, R. A., Low-Choy S., Fisher R., Mengersen KL., M. Caley J., & Alekseyenko A. V.
(2015). Characterising Uncertainty in Expert Assessments: Encoding Heavily Skewed Judgements.
PLOS ONE. 10(10), doi: 10.1371/journal.pone.0141697
Herschtal, A., Foroudi F., Kron T., & Mengersen KL.
(2015). A Comparison of Bayesian Models of Heteroscedasticity in Nested Normal Data.
Communications in Statistics - Simulation and Computation. 45(8), 2947-2964. doi: 10.1080/03610918.2014.936467
Chakraborty, S., Mengersen KL., Fidge C., Ma L., Lassen D., & Shi Y.
(2015). Multifaceted Modelling of Complex Business Enterprises.
PLOS ONE. 10(8), doi: 10.1371/journal.pone.0134052
Fisher, R., O’Leary R. A., Low-Choy S., Mengersen KL., Knowlton N., Brainard R. E., et al.
(2015). Species Richness on Coral Reefs and the Pursuit of Convergent Global Estimates.
Current Biology. 25(4), 500-505. doi: 10.1016/j.cub.2014.12.022
Hu, W., Zhang W., Huang X., Clements A., Mengersen KL., & Tong S.
(2015). Weather variability and influenza A (H7N9) transmission in Shanghai, China: A Bayesian spatial analysis.
Environmental Research. 136, 405-412. doi: 10.1016/j.envres.2014.07.033
Alston, C.L.., Mengersen KL., & Pettitt A.N..
(2015). Case Studies in Bayesian Statistical Modelling and Analysis.
The Quarterly Review of Biology. 90(3), 319 - 320. doi: 10.1086/682596
Baker, J., White N., & Mengersen KL.
(2015). Spatial modelling of type II diabetes outcomes: a systematic review of approaches used.
Royal Society Open Science. 2(6), 140460. doi: 10.1098/rsos.140460
Nakagawa, S., Poulin R., Mengersen KL., Reinhold K., Engqvist L., Lagisz M., et al.
(2015). Meta-analysis of variation: ecological and evolutionary applications and beyond.
Methods in Ecology and Evolution. 6(2), 143-152. doi: 10.1111/2041-210X.12309
Buys, L., Vine D., Ledwich G., Bell J., Mengersen KL., Morris P., et al.
(2015). A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand.
PLOS ONE. 10(3), doi: 10.1371/journal.pone.0121195
Wu, P., Fookes C., Pitchforth J., & Mengersen KL.
(2015). A framework for model integration and holistic modelling of socio-technical systems.
Decision Support Systems. 71, 14-27. doi: 10.1016/j.dss.2015.01.006
Falk, M. G., Alston C. L., McGrory C. A., Clifford S., Heron E. A., Leonte D., et al.
(2015). Recent Bayesian approaches for spatial analysis of 2-D images with application to environmental modelling.
Environmental and Ecological Statistics. 22(3), 571-600. doi: 10.1007/s10651-015-0311-1
Hsieh, J. C. - F., Cramb S., McGree J., Dunn N. A. M., Baade P. D., & Mengersen KL.
(2015). Geographic variation in the intended choice of adjuvant treatments for women diagnosed with screen-detected breast cancer in Queensland.
BMC Public Health. 15(1), doi: 10.1186/s12889-015-2527-2
Moores, M., Hargrave C., Deegan T., Poulsen M., Harden F., & Mengersen KL.
(2015). An external field prior for the hidden Potts model with application to cone-beam computed tomography.
Computational Statistics & Data Analysis. 86, 27-41. doi: 10.1016/j.csda.2014.12.001
Brown, E., Owen R., Harden F., Mengersen KL., Oestreich K., Houghton W., et al.
(2015). Predicting the need for adaptive radiotherapy in head and neck cancer.
Radiotherapy and Oncology. 116(1), 57-63. doi: 10.1016/j.radonc.2015.06.025
van Havre, Z., White N., Rousseau J., Mengersen KL., & Chen C. W. S.
(2015). Overfitting Bayesian Mixture Models with an Unknown Number of Components.
PLOS ONE. 10(7), doi: 10.1371/journal.pone.0131739
Donald, M. R., Mengersen KL., Young R. R., & Reigosa M.
(2015). A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset.
PLOS ONE. 10(10), doi: 10.1371/journal.pone.0141120
Herschtal, A., L Marvelde te., Mengersen KL., Hosseinifard Z., Foroudi F., Devereux T., et al.
(2015). Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors.
Physics in Medicine and Biology. 60(5), 1793-1805. doi: 10.1088/0031-9155/60/5/1793
Mengersen, KL., M. MacNeil A., & M. Caley J.
(2015). The potential for meta-analysis to support decision analysis in ecology.
Research Synthesis Methods. 6(2), 111-121. doi: 10.1002/jrsm.1105
Beaudequin, D., Harden F., Roiko A., Stratton H., Lemckert C., & Mengersen KL.
(2015). Modelling microbial health risk of wastewater reuse: A systems perspective.
Environment International. 84, 131-141. doi: 10.1016/j.envint.2015.08.001
Thomas, R., Mengersen KL., Thomas A., & Walland M. J.
(2015). Looking deeper than (just) below the surface.
Clinical & Experimental Ophthalmology. 43(5), 492-493. doi: 10.1111/ceo.12404
Herschtal, A., Marvelde L. Te, Mengersen KL., Foroudi F., Eade T., Pham D., et al.
(2015). Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization.
International Journal of Radiation Oncology*Biology*Physics. 92(2), 446-452. doi: 10.1016/j.ijrobp.2015.01.034
Arbel, J., King C.K., Raymond B., Winsley T., & Mengersen KL.
(2015). Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuel-contaminated soil.
Ecology and Evolution. 5(13), 2633-2645. doi: 10.1002/ece3.1493
Lewis, J., Mengersen KL., Buys L., Vine D., Bell J., Morris P., et al.
(2015). Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.
PLOS ONE. 10(7), doi: 10.1371/journal.pone.0134086
Beaudequin, D., Harden F., Roiko A., Stratton H., Lemckert C., & Mengersen KL.
(2015). Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian networks.
Environment International. 80, 8-18. doi: 10.1016/j.envint.2015.03.013
Kang, S. Yun, McGree J., & Mengersen KL.
(2015). Bayesian hierarchical models for analysing spatial point-based data at a grid level: A comparison of approaches.
Environmental and Ecological Statistics. 2, 297–327. doi: 10.1007/s10651-014-0299-y
Pitchforth, J., Wu P., Fookes C., & Mengersen KL.
(2015). Processing passengers efficiently: An analysis of airport processing times for international passengers.
Journal of Air Transport Management. 49, 35-45. doi: 10.1016/j.jairtraman.2015.06.016
Hsieh, J. C. - F., Cramb S., McGree J., Dunn N., Baade P. D., & Mengersen KL.
(2015). Does geographic location impact the survival differential between screen- and interval-detected breast cancers?.
Stochastic Environmental Research and Risk Assessment. 30(1), 155-165. doi: 10.1007/s00477-015-1050-4
Cramb, S., Baade P. D., White N., Ryan L. M., & Mengersen KL.
(2015). Inferring lung cancer risk factor patterns through joint Bayesian spatio-temporal analysis.
Cancer Epidemiology. 39(3), 430-439. doi: 10.1016/j.canep.2015.03.001
Abram, N., Meijaard E., Wells J. A., Ancrenaz M., Pellier AS., Runting R. K., et al.
(2015). Mapping perceptions of species' threats and population trends to inform conservation efforts: the Bornean orangutan case study.
Diversity and Distributions. 21(5), 487-499. doi: 10.1111/ddi.12286
Kang, S. Yun, McGree J., Baade P. D., & Mengersen KL.
(2015). A Case Study for Modelling Cancer Incidence Using Bayesian Spatio-Temporal Models.
Australian & New Zealand Journal of Statistics. 57(3), 325-345. doi: 10.1111/anzs.12127
Banu, S., Guo Y., Hu W., Dale P., Mackenzie J. S., Mengersen KL., et al.
(2015). Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh.
Scientific Reports. 5, 16105. doi: 10.1038/srep16105
Yu, W., Mengersen KL., Dale P., Ye X., Guo Y., Turner L., et al.
(2014). Projecting Future Transmission of Malaria Under Climate Change Scenarios: Challenges and Research Needs.
Critical Reviews in Environmental Science and Technology. 45(7), 777-811. doi: 10.1080/10643389.2013.852392
Wu, P., Pitchforth J., & Mengersen KL.
(2014). A Hybrid Queue-based Bayesian Network framework for passenger facilitation modelling.
Transportation Research Part C: Emerging Technologies. 46, 247-260. doi: 10.1016/j.trc.2014.05.005
Davis, J., Mengersen KL., Bennett S., & Mazerolle L.
(2014). Viewing systematic reviews and meta-analysis in social research through different lenses.
SpringerPlus. 3(1), 511. doi: 10.1186/2193-1801-3-511
Vercelloni, J., M. Caley J., Kayal M., Low-Choy S., Mengersen KL., & Deng Y.
(2014). Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover.
PLOS ONE. 9(11), doi: 10.1371/journal.pone.0110968
Mellin, C., Mengersen KL., Bradshaw C. J. A., & M. Caley J.
(2014). Generalizing the use of geographical weights in biodiversity modelling.
Global Ecology and Biogeography. 23(11), 1314-1323. doi: 10.1111/geb.12203
Buys, L., Mengersen KL., Johnson S., van Buuren N., & Chauvin A.
(2014). Creating a Sustainability Scorecard as a predictive tool for measuring the complex social, economic and environmental impacts of industries, a case study : assessing the viability and sustainability of the dairy industry.
Journal of Environmental Management. 133, 184–192. doi: 10.1016/j.jenvman.2013.12.013
Moores, M., Drovandi C. C., Mengersen KL., & Robert C. P.
(2014). Pre-processing for approximate Bayesian computation in image analysis.
Statistics and Computing. 25(1), 23-33. doi: 10.1007/s11222-014-9525-6
Publicly available softwares
Ebert, A., Wu P., & Mengersen KL.
(2017). queuecomputer.
Technical reports and unrefereed outputs
Ullah, I., Mengersen KL., Hyndman R. J., & McGree J.
(Submitted). Detection of cybersecurity attacks through analysis of web browsing activities using principal component analysis.
Kennedy, DW., White N., Mengersen KL., & Lea R.
(Submitted). Cell-type specific analysis of heterogeneous methylation signal using a Bayesian model-based approach.
Cameron, J., Kennedy D., & Mengersen KL.
(2019). Executive Summary of the Benchmarking Project.
Shausan, A.., Mengersen KL., Drovandi C.., & Aaskov J..
(2019). DARPA dengue project.
Cameron, J., Kennedy D., & Mengersen KL.
(2019). Clustering and Peer grouping DEX organisations.
Cramb, S., Duncan EW., Mengersen KL., & Baade PD.
(2018). Australian Cancer Atlas: small-area incidence technical report.
Cramb, S., Duncan EW., Baade P., & Mengersen KL.
(2018). Investigation of Bayesian spatial models.
Ebert, A., Wu P., Mengersen KL., & Ruggeri F.
(2017). Computationally Efficient Simulation of Queues: The R Package queuecomputer.
arXiv.
Xueou, W., Nott D. J., Drovandi C. C., Mengersen KL., & Evans M.
(2016). Using history matching for prior choice.
Caley, P., Stanaway M., Goodwin M., Barry S., Taylor S., Bottrill M., et al.
(2016). Review and redesign of the national bee pest surveilance program.
Vercelloni, J., Mengersen KL., Peterson E., Bednarz T., & Brown R.
(2016). Monitoring Through Many Eyes:Spatially enabling people to protect the Great Barrier Reef.
McBain, M., Fitzpatrick B., Colin B., Gough P., Wu P., & Mengersen KL.
(2016). Dashboard project for Australian Agricutural Company.
Roberts, JL., Cramb S., Baade P. D., & Mengersen KL.
(2016). Communicating Statistical Outputs Through Health Maps.
van Havre, Z., Mengersen KL., & Kelly M.
(2016). Estimation of Meat Quality indicators from photos.
Cramb, S., Duncan EW., White N., Baade P. D., & Mengersen KL.
(2016). Spatial Modelling Methods.
Johnson, S., Logan M., Fox D., & Mengersen KL.
(2016). Provision of statistical support during the development of the Gladstone Harbour report card.
Roberts, JL., Cramb S., Baade P. D., & Mengersen KL.
(2016). Grey Literature Review: Internet Published Cancer Maps.
Cook, A., & Mengersen KL.
(2016). Statistical review and update of detection surveilance systems for non indigenous species of terrestial plants vertebrates and invertebrates on Barrow Island.
Kennedy, DW., White N., Lea R., Benton M., Mengersen KL., & Griffiths L.
(2016). Evaluating linear regression routines for deconvolution of methylation signal from whole blood.