- Home
- People
- Associate Investigators
- Chris Drovandi
Assoc. Professor Chris Drovandi
Associate Investigator
Queensland University of Technology
Dr Chris Drovandi is an Associate Professor in the School of Mathematical Sciences at the Queensland University of Technology (QUT) and is an Associate Investigator of ACEMS. From 2016-2018 Chris held an Australian Research Council Discovery Early Career Researcher's Award, a highly competitve Government research grant. He is the Chair of the Bayesian Statistics Section of the Statistical Society of Australia and is an Associate Editor of Statistics and Computing. His research interests are in Bayesian algorithms for complex models, optimal Bayesian experimental design methods and the translation of Bayesian methods across many disciplines.
Research Interests:
Applied statistics
Bayesian computational algorithms
Bayesian design
Bayesian inference
Bayesian methodolgy
Bayesian statistical computation
Bayesian statistical modelling
Computational statistics
Qualifications:
Doctor of Philosophy (Statistics)
Projects
Publications
Invited talks, refereed proceedings and other conference outputs
Ebert, A., Wu P., Dutta R., Mengersen KL., Ruggeri F., Mira A., et al.
(2017). Approximate Bayesian Computation for Dynamic Queueing Networks.
5th Symposium on Games and Decisions in Reliability and Risk.
Cespedes, M. I., McGree J., Drovandi C. C., Mengersen KL., Doecke J., & Fripp J.
(2017). Spatio-temporal cortical brain patterns of Alzheimer's disease.
The International Biometric Society Australasian Region Conference.
Cespedes, M. I., McGree J., Drovandi C. C., Mengersen KL., Doecke J., & Fripp J.
(2017). Spatio-temporal brain cortical patterns of Alzheimer's disease.
Bayes on the Beach.
Vo, B., Drovandi C. C., Pettet G., & Pettitt A.N.
(2016). Approximate Bayesian Computation for cell biology.
Sixth IMS-ISBA Joint Meeting Bayes Comp at MCMski 5.
Mengersen, KL., Clifford S., Drovandi C. C., Harden F., Harden M., & Tierney N J.
(2016). Bayesian Approaches in Occupational Health Surveillance.
International Society for Bayesian Analysis.
Drovandi, C. C.
(2016). Bayesian Synthetic Likelihood.
Markov chain and Quasi-Monte Carlo Methods.
Journal Articles
An, Z., L. F. South, Nott D. J., & Drovandi C. C.
(2019). Accelerating Bayesian Synthetic Likelihood with the Graphical Lasso.
Journal of Computational and Graphical Statistics. 28(2), 471-475. doi: 10.1080/10618600.2018.1537928
Drovandi, C. C., Moores M., & Boys R. J.
(2018). Accelerating pseudo-marginal MCMC using Gaussian processes.
Computational Statistics & Data Analysis. 118, 1-17. doi: 10.1016/j.csda.2017.09.002
Cespedes, M. I., McGree J., Drovandi C. C., Mengersen KL., Doecke J. D., Fripp J., et al.
(2018). An efficient algorithm for estimating brain covariance networks.
PLOS ONE. 13(7), e0198583. doi: 10.1371/journal.pone.0198583
Lawson, B. A. J., Drovandi C. C., Cusimano N., Burrage P., Rodriguez B., & Burrage K.
(2018). Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology.
Science Advances. 4(1), e1701676. doi: 10.1126/sciadv.1701676
Dehideniya, M. B., Drovandi C. C., & McGree J.
(2018). Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology.
Computational Statistics & Data Analysis. 124, 277 - 297. doi: 10.1016/j.csda.2018.03.004
Ong, V. M. H., Nott D. J., Tran M N., Sisson S., & Drovandi C. C.
(2018). Variational Bayes with synthetic likelihood.
Statistics and Computing. 28(4), 971-988. doi: 10.1007/s11222-017-9773-3
L. F. South, Drovandi C. C., Lee A.., & Nott D.. J.
(2018). Bayesian Synthetic Likelihood.
Journal of Computational and Graphical Statistics. 27(1), 1-11. doi: 10.1080/10618600.2017.1302882
L. F. South, Mira A., & Drovandi C. C.
(2018). Regularised Zero-Variance Control Variates.
arXiv. arXiv:1811.05073v1.
Ong, V. M. - H., Nott D. J., Tran M N., Sisson S., & Drovandi C. C.
(2018). Likelihood-free inference in high dimensions with synthetic likelihood.
Computational Statistics & Data Analysis. 128, 271 - 291. doi: 10.1016/j.csda.2018.07.008
Drovandi, C. C., & Tran M N.
(2018). Improving the Efficiency of Fully Bayesian Optimal Design of Experiments Using Randomised Quasi-Monte Carlo.
Bayesian Analysis. 13(1), 139–162. doi: 10.1214/16-BA1045
Lawson, B. A. J., Burrage K., Burrage P., Drovandi C. C., & Bueno-Orovio A.
(2018). Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation.
Frontiers in Physiology. 9, 1114. doi: 10.3389/fphys.2018.01114
Salomone, R., L. F. South, Drovandi C. C., & Kroese D.
(2018). Unbiased and Consistent Nested Sampling via Sequential Monte Carlo.
arXiv. arXiv:1810.12499.
Overstall, A. M., McGree J., & Drovandi C. C.
(2018). An approach for finding fully Bayesian optimal designs using normal-based approximations to loss functions.
Statistics and Computing. 28(2), 343-358. doi: 10.1007/s11222-017-9734-x
L. F. South, Drovandi C. C., & Pettitt A.N.
(2017). Discussion of: A Bayesian information criterion for singular models.
Journal of the Royal Statistical Society, Series B (Statistical Methodology).
Cespedes, M. I., Fripp J., McGree J., Drovandi C. C., Mengersen KL., & Doecke J. D.
(2017). Comparisons of neurodegeneration over time between healthy ageing and Alzheimer's disease cohorts via Bayesian inference.
BMJ Open. 7(2), 12174-12174. doi: 10.1136/bmjopen-2016-012174
Drovandi, C. C., Holmes C. C., McGree J., Mengersen KL., Richardson S., & Ryan E. G.
(2017). Principles of Experimental Design for Big Data Analysis.
Statistical Science. 32(3), 385 - 404. doi: 10.1214/16-STS604
Chen, C.C.-M.., Drovandi C. C., Keith J.M.., Anthony K., M. Caley J., & Mengersen KL.
(2017). Bayesian semi-individual based model with approximate Bayesian computation for parameters calibration: Modelling Crown-of-Thorns populations on the Great Barrier Reef.
Ecological Modelling. 364, 113 - 123. doi: 10.1016/j.ecolmodel.2017.09.006
Chen, CC-M., Bourne D. G., Drovandi C. C., Mengersen KL., Willis B. L., M. Caley J., et al.
(2017). Modelling environmental drivers of black band disease outbreaks in populations of foliose corals in the genus Montipora.
PeerJ. 5, e3438. doi: 10.7717/peerj.3438
Drovandi, C. C., Cusimano N., Psaltis S. T. P., Lawson B. A. J., Pettitt A.N., Burrage P., et al.
(2016). Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments.
Journal of The Royal Society Interface. 13(121), doi: 10.1098/rsif.2016.0214
Ryan, C. M., Drovandi C. C., & Pettitt A.N.
(2016). Optimal Bayesian experimental design for models with intractable likelihoods using indirect inference applied to biological process models.
Bayesian Analysis. 11(3), 857-883. doi: 10.1214/15-BA977
Drovandi, C. C., Pettitt A.N., & McCutchan R. A.
(2016). Exact and approximate Bayesian inference for low integer-valued time series models with intractable likelihoods.
Bayesian Analysis. 11(2), 325-352. doi: 10.1214/15-BA950
Ryan, E. G., Drovandi C. C., McGree J., & Pettitt A.N.
(2016). A Review of Modern Computational Algorithms for Bayesian Optimal Design.
International Statistical Review. 84(1), 128-154. doi: 10.1111/insr.12107
Kang, S. Y., McGree J., Drovandi C. C., M. Caley J., & Mengersen KL.
(2016). Bayesian adaptive design: Improving the effectiveness of monitoring of the Great Barrier Reef.
Ecological Applications. 26(8), 2637-2648. doi: 10.1002/eap.1409
Mengersen, KL., Drovandi C. C., Robert C. P., Pyne D. B., Gore C. J., & Chen C. W. S.
(2016). Bayesian estimation of small effects in exercise and sports science.
PLOS ONE. 11(4), 1-23. doi: 10.1371/journal.pone.0147311
Ryan, E., Drovandi C. C., & Pettitt A.N.
(2015). Fully Bayesian Experimental Design for Pharmacokinetic Studies.
Entropy. 17(3), 1063-1089. doi: 10.3390/e17031063
Lee, X. J., Drovandi C. C., & Pettitt A.N.
(2015). Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets.
Biometrics. 71(1), 198-207. doi: 10.1111/biom.12249
Vo, B., Drovandi C. C., Pettitt A.N., & Simpson M. J.
(2015). Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation.
Mathematical Biosciences. 263, 133-142. doi: 10.1016/j.mbs.2015.02.010
Drovandi, C. C., Pettitt A.N., & Lee A.
(2015). Bayesian Indirect Inference Using a Parametric Auxiliary Model.
Statistical Science. 30(1), 72-95. doi: 10.1214/14-STS498
Vo, B., Drovandi C. C., Pettitt A.N., Pettet G., & Byrne H.
(2015). Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation.
PLoS Computational Biology. 11(12), doi: 10.1371/journal.pcbi.1004635
Ryan, E. G., Drovandi C. C., & Pettitt A.N.
(2015). Simulation-based fully Bayesian experimental design for mixed effects models.
Computational Statistics & Data Analysis. 92, 26-39. doi: 10.1016/j.csda.2015.06.007
McGree, J., Drovandi C. C., White G., & Pettitt A.N.
(2015). A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design.
Statistics and Computing. 26(5), 1121-1136. doi: 10.1007/s11222-015-9596-z
Ali, H., Cameron E., Drovandi C. C., McCaw J. M., Guy R. J., Middleton M., et al.
(2015). A new approach to estimating trends in chlamydia incidence.
Sexually Transmitted Infections. 91(7), 513-519. doi: 10.1136/sextrans-2014-051631
Moores, M., Drovandi C. C., Mengersen KL., & Robert C. P.
(2014). Pre-processing for approximate Bayesian computation in image analysis.
Statistics and Computing. 25(1), 23-33. doi: 10.1007/s11222-014-9525-6
Technical reports and unrefereed outputs
L. F. South, Pettitt A.N., Friel N., & Drovandi C. C.
(2017). Efficient Use of Derivative Information within SMC Methods for Static Bayesian Models.
L. F. South, Drovandi C. C., & Pettitt A.N.
(2016). Sequential Monte Carlo for static Bayesian models with independent MCMC proposals.
L. F. South, Drovandi C. C., Lee A., & Nott D. J.
(2016). Bayesian Synthetic Likelihood.
Xueou, W., Nott D. J., Drovandi C. C., Mengersen KL., & Evans M.
(2016). Using history matching for prior choice.