- Home
- People
- Associate Investigators
- Leah South
Dr Leah South
Lecturer, Associate Investigator
Queensland University of Technology
I'm a lecturer in statistics at Queensland University of Technology. My research interests are in (Bayesian) computational statistics, especially variance reduction techniques, applications of Stein's method and scalable Monte Carlo methods for big data. Please see my website for more information.
Research Interests:
Approximate Bayesian Computation
Bayesian statistics
Computational statistics
sequential Monte Carlo
Variance reduction
Qualifications:
Bachelor of Mathematics, QUT
Doctor of Philosophy, QUT
Projects
Publications
Journal Articles
L. F. South, Riabiz M.., Teymur O.., & Oates C. J.
(2022). Postprocessing of MCMC.
Annual Review of Statistics and Its Application. 9, doi: 10.1146/annurev-statistics-040220-091727
L. F. South, Karvonen T.., Nemeth C.., Girolami M., & Oates C. J.
(2021). Semi-exact control functionals from Sard's method.
Biometrika. doi: 10.1093/biomet/asab036
An, Z., L. F. South, Nott D. J., & Drovandi C. C.
(2019). Accelerating Bayesian Synthetic Likelihood with the Graphical Lasso.
Journal of Computational and Graphical Statistics. 28(2), 471-475. doi: 10.1080/10618600.2018.1537928
Salomone, R., L. F. South, Drovandi C. C., & Kroese D.
(2018). Unbiased and Consistent Nested Sampling via Sequential Monte Carlo.
arXiv. arXiv:1810.12499.
L. F. South, Drovandi C. C., Lee A.., & Nott D.. J.
(2018). Bayesian Synthetic Likelihood.
Journal of Computational and Graphical Statistics. 27(1), 1-11. doi: 10.1080/10618600.2017.1302882
L. F. South, Mira A., & Drovandi C. C.
(2018). Regularised Zero-Variance Control Variates.
arXiv. arXiv:1811.05073v1.
L. F. South, Drovandi C. C., & Pettitt A.N.
(2017). Discussion of: A Bayesian information criterion for singular models.
Journal of the Royal Statistical Society, Series B (Statistical Methodology).
Publicly available softwares
L. F. South, & Salomone R.
(2018). SMC-NS.
L. F. South
(2018). ZVCV.
Technical reports and unrefereed outputs
L. F. South, Pettitt A.N., Friel N., & Drovandi C. C.
(2017). Efficient Use of Derivative Information within SMC Methods for Static Bayesian Models.
L. F. South, Drovandi C. C., Lee A., & Nott D. J.
(2016). Bayesian Synthetic Likelihood.
L. F. South, Drovandi C. C., & Pettitt A.N.
(2016). Sequential Monte Carlo for static Bayesian models with independent MCMC proposals.