- Home
- People
- Associate Investigators
- Michael Wheeler
Dr Michael Wheeler
Research Fellow, ARC DECRA Fellow
The University of Melbourne
Projects
Publications
Invited talks, refereed proceedings and other conference outputs
Chen, Z., & Wheeler M.
(2018). Stochastic dualities from degenerate non-symmetric Macdonald polynomials.
Rainsfest, University of Queensland.
Journal Articles
de Gier, J., Mead W., & Wheeler M.
(2021). Transition probability and total crossing events in the multi-species asymmetric exclusion process.
arXiv. arXiv:2109.14232v1.
Garbali, A., & Wheeler M.
(2019). Modified Macdonald polynomials and integrability.
arXiv. arXiv:1810.12905v2.
Garbali, A., & Wheeler M.
(2018). Modified Macdonald polynomials and integrability.
arXiv. arXiv:1810.12905.
Chen, Z., De Gier J., & Wheeler M.
(2017). Integrable stochastic dualities and the deformed Knizhnik–Zamolodchikov equation.
Garbali, A., De Gier J., & Wheeler M.
(2017). A New Generalisation of Macdonald Polynomials.
Communications in Mathematical Physics. 352(2), 773 - 804. doi: 10.1007/s00220-016-2818-1
Betea, D., & Wheeler M.
(2016). Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices.
Journal of Combinatorial Theory, Series A. 137, 126-165. doi: 10.1016/j.jcta.2015.08.007
Wheeler, M., & Zinn-Justin P.
(2016). Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons.
Advances in Mathematics. 299, 543-600. doi: 10.1016/j.aim.2016.05.010
De Gier, J., & Wheeler M.
(2016). A summation formula for Macdonald polynomials.
Letters in Mathematical Physics. 106(3), 381-394. doi: 10.1007/s11005-016-0820-3
Cantini, L., Garbali A., De Gier J., & Wheeler M.
(2016). Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries.
Journal of Physics A: Mathematical and Theoretical. 49(44), 444002-444002. doi: 10.1088/1751-8113/49/44/444002
Betea, D., Wheeler M., & Zinn-Justin P.
(2015). Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures.
Journal of Algebraic Combinatorics. 42(2), 555-603. doi: 10.1007/s10801-015-0592-3
Cantini, L., De Gier J., & Wheeler M.
(2015). Matrix product formula for Macdonald polynomials.
Journal of Physics A: Mathematical and Theoretical. 48(38), 384001. doi: 10.1088/1751-8113/48/38/384001
Technical reports and unrefereed outputs
Garbali, A., De Gier J., & Wheeler M.
(2016). A new generalisation of Macdonald polynomials, arXiv preprint.