- Home
- People
- Associate Investigators
- Michael Wheeler
Dr Michael Wheeler
Research Fellow, ARC DECRA Fellow
The University of Melbourne
Projects
Prizes, awards and special recognition
2016
Dean's Award for Excellence in Research was awarded to Michael Wheeler. Awarded from the Faculty of Science, University of Melbourne.
Publications
Invited talks, refereed proceedings and other conference outputs
Chen, Z., & Wheeler M.
(2018). Stochastic dualities from degenerate non-symmetric Macdonald polynomials.
Rainsfest, University of Queensland.
Journal Articles
Garbali, A., & Wheeler M.
(2019). Modified Macdonald polynomials and integrability.
arXiv. arXiv:1810.12905v2.
Garbali, A., & Wheeler M.
(2018). Modified Macdonald polynomials and integrability.
arXiv. arXiv:1810.12905.
Chen, Z., De Gier J., & Wheeler M.
(2017). Integrable stochastic dualities and the deformed Knizhnik–Zamolodchikov equation.
Garbali, A., De Gier J., & Wheeler M.
(2017). A New Generalisation of Macdonald Polynomials.
Communications in Mathematical Physics. 352(2), 773 - 804. doi: 10.1007/s00220-016-2818-1
Betea, D., & Wheeler M.
(2016). Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices.
Journal of Combinatorial Theory, Series A. 137, 126-165. doi: 10.1016/j.jcta.2015.08.007
Wheeler, M., & Zinn-Justin P.
(2016). Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons.
Advances in Mathematics. 299, 543-600. doi: 10.1016/j.aim.2016.05.010
De Gier, J., & Wheeler M.
(2016). A summation formula for Macdonald polynomials.
Letters in Mathematical Physics. 106(3), 381-394. doi: 10.1007/s11005-016-0820-3
Cantini, L., Garbali A., De Gier J., & Wheeler M.
(2016). Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries.
Journal of Physics A: Mathematical and Theoretical. 49(44), 444002-444002. doi: 10.1088/1751-8113/49/44/444002
Betea, D., Wheeler M., & Zinn-Justin P.
(2015). Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures.
Journal of Algebraic Combinatorics. 42(2), 555-603. doi: 10.1007/s10801-015-0592-3
Cantini, L., De Gier J., & Wheeler M.
(2015). Matrix product formula for Macdonald polynomials.
Journal of Physics A: Mathematical and Theoretical. 48(38), 384001. doi: 10.1088/1751-8113/48/38/384001
Technical reports and unrefereed outputs
Garbali, A., De Gier J., & Wheeler M.
(2016). A new generalisation of Macdonald polynomials, arXiv preprint.