- Home
- People
- Past Members of ACEMS
- Peter Hall
Professor Peter Hall
ACEMS Inaugural Director
The University of Melbourne
Peter Gavin Hall AO FAA FRS (20 November 1951 – 9 January 2016) was an Australian researcher in probability theory and mathematical statistics.
Projects
Publications
Book Chapters
Hall, P.
(2016). Rabi N. Bhattacharya: Selected Papers.
(Denker, M., & Waymire E. C., Ed.). 3-13. doi: 10.1007/978-3-319-30190-7_1
Invited talks, refereed proceedings and other conference outputs
Huang, W., Delaigle A., Hall P., & Kneip A.
(2021). Estimating the covariance of fragmented and other related types of functional data.
4th International Conference on Econometrics and Statistics (EcoSta 2021).
Journal Articles
Chen, F., & Hall P.
(2016). Nonparametric estimation for self-exciting point processes—A parsimonious approach.
Journal of Computational and Graphical Statistics. 25(1), 209-224. doi: 10.1080/10618600.2014.1001491
Delaigle, A., Hall P., & Zhou W-X.
(2016). Nonparametric covariate-adjusted regression.
The Annals of Statistics. 44(5), 2190-2220. doi: 10.1214/16-AOS1442
Hall, P., & Hooker G.
(2016). Truncated linear models for functional data.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 78(3), 637-653. doi: 10.1111/rssb.12125
Delaigle, A., & Hall P.
(2016). Methodology for non-parametric deconvolution when the error distribution is unknown.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 78(1), 231-252. doi: 10.1111/rssb.12109
Genton, M. G., & Hall P.
(2016). A tilting approach to ranking influence.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 78(1), 77-97. doi: 10.1111/rssb.12102
Doosti, H., & Hall P.
(2016). Making a non-parametric density estimator more attractive, and more accurate, by data perturbation.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 78(2), 445-462. doi: 10.1111/rssb.12120
Claeskens, G., Dette H., Gijbels I., & Hall P.
(2016). New developments in functional and highly multivariate statistical methodology.
Oberwolfach Reports. 13(1), 567-614. doi: 10.4171/OWR/2016/12
Hall, P., & Racine J. S.
(2015). Infinite order cross-validated local polynomial regression.
Journal of Econometrics. 185(2), 510-525. doi: 10.1016/j.jeconom.2014.06.003
Ferraty, F., & Hall P.
(2015). An Algorithm for Nonlinear, Nonparametric Model Choice and Prediction.
Journal of Computational and Graphical Statistics. 24(3), 695-714. doi: 10.1080/10618600.2014.936605
Delaigle, A., Hall P., & Jamshidi F.
(2015). Confidence bands in non-parametric errors-in-variables regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 77(1), 149-169. doi: 10.1111/rssb.12067
Chang, J., & Hall P.
(2015). Double-bootstrap methods that use a single double-bootstrap simulation.
Biometrika. 102(1), 203-214. doi: 10.1093/biomet/asu060
Xue, J-H., & Hall P.
(2015). Why Does Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant Analysis?.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 37(5), 1109-1112. doi: 10.1109/TPAMI.2014.2359660
Hall, P., Jin J., & Miller H.
(2014). Feature selection when there are many influential features.
Bernoulli. 20(3), 1647-1671. doi: 10.3150/13-BEJ536
Hall, P., & Ma Y.
(2014). Quick and easy one-step parameter estimation in differential equations.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 76(4), 735-748. doi: 10.1111/rssb.12040