- Home
- People
- Associate Investigators
- Matias Quiroz
Dr Matias Quiroz
Associate Investigator
University of Technology Sydney
I received my Ph.D. degree from the Department of Statistics at Stockholm University 2015, under the supervision of Professor Mattias Villani. I also hold a M.Sc. degree in Engineering Mathematics from Lund University (2009). I joined ACEMS in 2017, where I worked under the supervision of CI Professor Robert Kohn until 2019. I am currently a Lecturer in Statistics at the University of Technology Sydney (UTS).
My research interests lie in the area of Bayesian Statistics. In particular, I am interested in computationally challenging problems, especially in Markov chain Monte Carlo simulation algorithms and variational inference.
Research Interests:
Big Data
Computational statistics
Monte Carlo Methods
Qualifications:
Ph. D. in Statistics, Stockholm University, 2015
M. Sc. in Engineering Mathematics, Lund University, 2009
Projects
Publications
Invited talks, refereed proceedings and other conference outputs
Xu, M.., Quiroz M., Kohn R., & Sisson S.
(2019). Variance reduction properties of the reparameterisation trick.
(Chaudhuri, K., & Sugiyama M., Ed.).The 22nd International Conference on Artificial Intelligence and Statistics. 89, 2711-2720.
Quiroz, M., Nott D., & Kohn R.
(2018). The Mathematics of Biological Systems Management Symposium.
The Mathematics of Biological Systems Management Symposium.
Dang, K.. D., Quiroz M., Kohn R., Tran M N., & Villani M.
(2018). Hamiltonian Monte Carlo with energy conserving subsampling.
The 2nd International Conference on Econometrics and Statistics (EcoSta 2018).
Quiroz, M., Nott D., & Kohn R.
(2018). Gaussian variational approximation for high-dimensional state space models.
2nd International Conference on Econometrics and Statistics.
Quiroz, M., Tran M N., Villani M., Kohn R., & Dang K-D.
(2018). The block-Poisson estimator for optimally exact subsampling MCMC.
International Society of Bayesian Analysis.
Dang, K.-D., Quiroz M., Kohn R., Tran M N., & Villani M.
(2017). Hamiltonian Monte Carlo with Energy Conserving Subsampling.
Bayes on the Beach.
Tran, M N., Kohn R., Quiroz M., & Villani M.
(2017). The block pseudo-marginal sampler.
Bayes on the beach.
Quiroz, M., Nott D., & Kohn R.
(2017). Gaussian variational approximation for high-dimensional state space models.
The Sydney Time Series & Forecasting Symposium.
Tran, M N., Kohn R., Quiroz M., & Villani M.
(2017). The block-pseudo marginal sampler.
The 1st International Conference on Econometrics and Statistics (EcoSta 2017).
Quiroz, M., Tran M N., Villani M., & Kohn R.
(2017). Exact Subsampling MCMC.
1st International Conference on Econometrics and Statistics (EcoSta 2017).
Journal Articles
Quiroz, M., Kohn R., Villani M., & Tran M N.
(2019). Speeding Up MCMC by Efficient Data Subsampling.
Journal of the American Statistical Association. 114(526), 831-843. doi: 10.1080/01621459.2018.1448827
Quiroz, M., Nott D. J., & Kohn R.
(2018). Gaussian variational approximations for high-dimensional state space models.
Dang, K.. D., Quiroz M., Kohn R., Tran M N., & Villani M.
(2017). Hamiltonian Monte Carlo with Energy Conserving Subsampling.
Technical reports and unrefereed outputs
Dang, K.-D., Quiroz M., Kohn R., Tran M N., & Villani M.
(2017). Hamiltonian Monte Carlo with Energy Conserving Subsampling.
Tran, M N., Kohn R., Quiroz M., & Villani M.
(2016). Block-Wise Pseudo-Marginal Metropolis-Hastings.
Quiroz, M., Villani M., & Kohn R.
(2016). Exact Subsampling MCMC.