- Home
- People
- Associate Investigators
- Earo Wang
Dr Earo Wang
Associate Investigator
University of Auckland
I’m a lecturer in the Department of Statistics at the University of Auckland. I earned my Ph.D. from Monash University, supervised by Professor Di Cook and Professor Rob J Hyndman. I was awarded the John Chambers Software Award for the R package {tsibble} in 2019. My research areas invovle statistical computing and graphics, and time series analysis.
-- NORMAL --
Research Interests:
data visualisation
Statistical computing
Time Series Analysis
Qualifications:
PhD
Publications
Invited talks, refereed proceedings and other conference outputs
Wang, E.
(2021). Conversations in time: interactive visualization to explore structured temporal data.
Joint Statistical Meeting 2021.
Journal Articles
Publicly available softwares
Hyndman, R. J., Lee A., Wang E., & Wickramasuriya S. L.
(2021). hts: Hierarchical and Grouped Time Series (Version 6.0.2).
Hyndman, R. J., Athanasopoulos G., Bergmeir C., Carceres G., Chhay L., O'Hara-Wild M., et al.
(2021). forecast: Forecasting Functions for Time Series and Linear Models (Version 8.15).
O'Hara-Wild, M., Hyndman R. J., Wang E., Cook D., Talagala T., & Chhay L.
(2021). feasts: Feature Extraction and Statistics for Time Series (Version 0.2.2).
O'Hara-Wild, M., Hyndman R. J., Wang E., Cook D., Athanasopoulos G., & Holt D.
(2021). fabletools: Core Tools for Packages in the 'fable' Framework (Version 0.3.1).
O'Hara-Wild, M., Hyndman R. J., Wang E., Godahewa R., & Bergmeir C.
(2021). tsibbledata: Diverse Datasets for ’tsibble’ (Version 0.3.0).
O'Hara-Wild, M., Hyndman R. J., Wang E., Caceres G., Hensel T-G., & Hyndman T.
(2021). fable: Forecasting Models for Tidy Time Series (Version 0.3.1).
Wang, E., Cook D., Hyndman R. J., O'Hara-Wild M., Smith T., & Davis W.
(2021). tsibble: Tidy Temporal Data Frames and Tools (Version 1.0.1).
Forbes, J., Cook D., Ebert A., Hofmann H., Hyndman R. J., Lumley T., et al.
(2021). eechidna: Exploring Election and Census Highly Informative Data Nationally for Australia (Version 1.4.1).
Wang, E., & Cook D.
(2020). tsibbletalk.
O'Hara-Wild, M., Wang E., Kay M., & Hayes A.
(2020). distributional.
Cook, D., Ebert A., Forbes J., Hofmann H., Hyndman R. J., Lumley T., et al.
(2019). eechidna: Exploring Election and Census Highly Informative Data Nationally for Australia.
Hyndman, R. J., Wang E., O'Hara-Wild M., Cook D., & Caceres G.
(2019). fable: Forecasting Models for Tidy Time Series.
Hyndman, R. J., Athanasopoulos G., Bergmeir C., Carceres G., Chhay L., O'Hara-Wild M., et al.
(2019). forecast: Forecasting Functions for Time Series and Linear Models.
O'Hara-Wild, M., Hyndman R. J., Wang E., Cook D., Talagala T., & Chhay L.
(2019). feasts: Feature Extraction And Statistics for Time Series.
Hyndman, R. J., & Wang E.
(2019). fabletools: Core Tools for Packages in the 'fable' Framework.
O'Hara-Wild, M., Hyndman R. J., Wang E., Cook D., & Athanasopoulos G.
(2019). fabletools: Core Tools for Packages in the 'fable' Framework.
Hyndman, R. J., O'Hara-Wild M., & Wang E.
(2019). tsibbledata: Diverse Datasets for 'tsibble'.
O'Hara-Wild, M., Hyndman R. J., Wang E., & Caceres G.
(2019). fable: Forecasting Models for Tidy Time Series.
Hyndman, R. J., Wang E., & Cook D.
(2019). feasts: Feature Extraction And Statistics for Time Series.
Hyndman, R. J., Lee A., Wang E., & Wickramasuriya S. L.
(2018). hts: Hierarchical and Grouped Time Series.
Wang, E., Cook D., Hyndman R. J., & O'Hara-Wild M.
(2018). tsibble: Tidy Temporal Data Frames and Tools.
Wang, E., Cook D., & Hyndman R. J.
(2018). sugrrants: Supporting Graphs for Analysing Time Series.
Hyndman, R., Wang E., Kang Y., Talagala T., Yang Y., & Ben Taieb S.
(2018). tsfeatures: Time Series Feature Extraction.
Wang, E., Cook D., & Hyndman R. J.
(2017). sugrrants: Provides ‘ggplot2’ graphics for analysing time series data..
Cook, D., Ebert A., Hofmann H., Hyndman R., Lumley T., Marwick B., et al.
(2017). eechidna: Exploring Election and Census Highly Informative Data Nationally for Australia.